

Soil Considerations in Agroforestry

Allen Casey, NRCS Plant Materials Center allen.casey@usda.gov

What Functions Would We Like our Soil to Provide?

- Produce food, feed, fiber, biofuels & medicine
- Capture, filter, and store water
- Cycle and recycle nutrients
- Resilience to drought, flood & temp extremes

- Protect plants from pathogens and stress
- Detoxify pollutants
- Store C and moderate release of gases
- Resist erosive forces

How does NRCS Define Soil Health?

The continued capacity of the soil to function as a vital living ecosystem that sustains plants, animal and humans.

Soil Health in Popular Press

The 4 Principles that Conserve the Soil Ecosystem

- 1. Minimize Disturbance
- 2. Maximize Living Cover
- 3. Maximize Biodiversity
- 4. Maximize Continuous Living Roots

Soil Health Principles to Support High Functioning Soils

How Soil Health Principles Support Soil function – PROTECT

Why Maximize Soil Cover?

- \downarrow Erosion
- ↑ Infiltration
- \downarrow Evaporation
- \leftrightarrow Soil Temp

- Habitat for Soil Organisms 个
- Food for Biota \uparrow
- ↔ Compaction from Machines & Livestock

How Soil Health Principles Support Soil Function – FEED

How Do We Maximize Living Roots?

- Grow crops in the off-season
- Avoid fallow & \downarrow re-cropping interval
- ↑ time in perennial crops
- Manage rotations & forage height

What Practices?

- Alley Cropping (311)
- Multi-Storied Cropping (379)
- Silvopasture (381)
- Forage & Biomass Planting (512)
- Prescribed Grazing (528)

How Do We Maximize Biodiversity?

- \uparrow diversity of crop rotations
- Integrate livestock & graze cover crops
- - Alley Cropping (311)
 - Multi-Storied Cropping (379)
 - Silvopasture (381)
 - Forage & Biomass Planting (512)
 - Prescribed Grazing (528)
 - Conservation Crop Rotation (328)
 - Cover Crop (340)
 - Forage & Biomass Planting (512)
 - IPM (595)
 - Prescribed Grazing (528)

What Practices can be used in Agroforestry to Promote Soil Health?

- Alley Cropping (311)
- Multi-Storied Cropping (379)
- Windbreak and Shelterbelt Establishment (380)
- Silvopasture (381)
- Windbreak and Shelterbelt Renovation (650)
- Cover Crop (340)
- Residue & Tillage Mgmt. (329/345)
- Conservation Cover (327)
- Mulching (484)
- Forage & Biomass Planting (512)
- Prescribed Grazing (528)

Social & Economic Considerations

Adopting Soil Health and Agroforestry Practices

- "Requires not only an understanding of the physical resource data but also social data."
- Awareness a understanding key human social & economic considerations can assist with implementation & long term adoption

What is the current perception of Agroforestry in your region?

What keeps people from implementing & how have others overcome these obstacles?

Attributes promoting technology adoption

Personal

- Above average income
- Formal education
- High participation in ag groups
- Greater reliance on mass media
- Willing to take risks

Farm

- Farm Size
- Diversity
- Owner operator
- Smaller scale & low to medium gross sales may be more likely to adopt soil health

Practice

- Economically feasible
- Observable; easy to use
- Compatible with producer beliefs
- Flexibly fit with the rotation

What are Some Obstacles to Agroforestry Adoption?

- Lack of technical information
- Lack of community support (socially or economically)
- Inter-Agency organizational barriers
- Landlord/tenant relationships
- Economic
 - Installation cost
 - Management capability
 - Risk aversion

Economic Considerations

- How many producers have used these arguments to not implement agroforestry practices?
 - It costs too much
 - Lack of time to manage
 - Uses too much water
 - Don't have the right equipment

Agroforestry Practices as a Farm Investment

- There are immediate costs, risk and uncertain longterm benefits
- The investment does not have a guaranteed payoff
- Find long-term users to show benefits, to inspire and maintain long-term investments by farmers

Improved Soil Function can Lead to Benefits for the Producer

Potential Benefits

- Reduced Erosion
- Increased Soil Organic Matter
- Increased Nutrient Cycling
- Increased Drought Resilience
- More Available Water
- Improved Filtering and Buffering
- Reduced Pest and Disease incidence
- Reduced Risk

How can we help landowners evaluate the impact on their farm (& society)?

BENEFITS	<u>COSTS</u>
Soil	Land
Water	Labor
Air	Capital
Plants	Management
Animals	Risk
Energy	

"Human"

How do Economists Compare? <u>Partial Budget</u> Approach

We are looking at **WHAT CHANGES** – Before and After (or between "Baseline" and "Alternative(s)")

Positive Effects "+"	Negative Effects "_"
Increased Revenues	Increased Costs
Reduced Costs	Decreased Revenue

Agroforestry Practice Benefit-Cost Templates aka "T-Charts"

Silvopasture Establishment (Ac) 381

<u>Definition:</u> An application establishing a combination of trees or shrubs and compatible forages on the same acreage.

Major Resource Concerns Addressed: Soil productivity and livestock habitat.

Benchmark Condition: Sparse woodlot adjacent to pasture land.

Date: October, 2016 Developer/Location: Hal Gordon, OR

Positive Effects	Negative Effects
Soil	Land
• Sheet, rill, wind, gully and streambank	Cultural resources may be harmed
erosion is reduced by establishing a	during earth moving or tree planting.
combination of trees, shrubs and	 Change in land use and land in
forages which reduce erosion by water.	production.
 Permanent vegetation, roots, 	Capital
vegetative matter and livestock waste	Additional field equipment may be
may increase soil organic matter.	required (crop, hay or livestock).
• Tree root penetration and organic	• Installation, materials & planting costs.
matter counteracts soil compaction	• Annual operation and maintenance
from livestock.	costs to maintain vegetation and
Contaminants taken up by forage	manage pests.
plants will be returned to the soil as	Labor
manure.	• Increase in labor managing tree and

Slide 24

7:38 PM

NRCS | SHD | Socia

Categories not as easy to quantify

(but important to consider)

- Changes in labor (timing)
- Soil health characteristics difficult to tie to actual dollars spent or saved
 - e.g. earthworms, SOC

• Risk

- *e.g.* increased soil health can help reduce crop loss due to weather extremes
- Social Impacts

Things to Remember

- 1. Adopting a soil health and agroforestry conservation system is a long-term investment.
- 2. Just like soil degradation does not happen over night, improving soil health also takes time.
- 3. There are agroforestry benefits that result in economic benefits that may not be easily measured, such as reduced risk of yield variability.
- To realize the greatest benefits from a Agroforestry Soil health system, we must find what works best for a producer given THEIR objectives and goals.

This information is provided as a public service and constitutes no endorsement by the United States Department of Agriculture or the Natural Resources Conservation Service of any service, supply, or equipment listed.

While an effort has been made to provide a complete and accurate listing of services, supplies, and equipment, omissions or other errors may occur and, therefore, other available sources of information should be consulted The USDA is an equal opportunity provider and employer.